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Abstract
Increasingly, machine learning is entertained as a mechanism for improving the efficiency of plan-
ning systems. Research in this area has generated an impressive battery of techniques and a growing
body of empirical successes. Unfortunately the formal properties of these systems are not well un-
derstood. This is highlighted by a growing corpus of demonstrations where learning actually de-
grades planning performance. In this paper we view learning to plan as a search problem. Learning
is seen as a transformational process where a planner is tailored to a particular domain and problem
distribution. To accomplish this task, learning systems draw from a vocabulary of transformation
operators such as macro-operators or control rules. These "learning operators" define a space of
possible transformations through which a system must search for a efficient planner. We show that
the complexity of this search precludes a general solution and can only be approached via simplifica-
tions. We illustrate the frequently unarticulated commitments which underly current learning ap-
proaches. These simplifications imprc..e learning efficiency but not without tradeoffs. In some
cases these tradeoffs result in less than optimal behavior. In others, they produce planners which
become worse through learning. It is hoped that by articulating these commitments we can better
understand their ramifications. Finally, we discusses a particular learning techniqw, which explicitly
utilizes these simplifications to ensures performance improvements with reasonable efficiency.
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1 INTRODUCTION

In machine learning there is considerable interest in techniques which improve planning ability. In-

vestigation in this area has identified a wide array of techniques including macrooperators

[DeJong86, Fikes72, Mitchell86], chunks [Laird86], and control rules [Minton88, Mitche1183].

With these techniques comes a growing battery of successful demonstrations in domains ranging

from 8puz7le to Space Shuttle payload processing. Unfortunately, the formal properties of these

techniques are not well understood. This is highlighted by a growing body of demonstrations where

learning degrades planning performance [Etzioni90a, Gratch9 1 b, Minton85, Subramanian90].

In this paper we will develop a view of learning as search and compare alternate learning strategies

against this common perspective. We will show that the complexity of general task of improving

a planner must be approached by imposing simplifications. Section 3 explores the frequently unar-

ticulated commitments which underly learning approaches. These simplifications improve learning

efficiency but not without tradeoffs. In some cases these tradeoffs result in less than optimal behav-

ior. In others, they lead to planners which grow worse through learning. It is hoped that by articulat-

ing these commitments we can better understand their ramificat2ons.

Section 4 discusses a particular method which ensures performance improvements with reasonable

efficiency. The COMPOSER system is an extension of the PRODIGY/EBL approach to speedup

learning. Its contribution is a rigorous form of utility analysis which orovides probabilistic guaran-

tees of improvement.

2 ADEQUATE LEARNING

A learning system should take a particular planning system operating within a particular domain and

tailor it to more effectively solve problems. This can be viewed as a transformational process where

a series of transformations are applied to the original problem solver (see [Gratch90b, Greiner92]).

A planner may be transformed by the addition of control knowledge. Different forms of control

knowledge include macrooperators [Braverman88, Laird86, Markovitch89], control rules [Drum-

mond89, Etzioni90a, Minton88, Mitche1183], and static board evaluation functions [Utgoff91]. Al-

ternatively, a learning system may modify the domain theory. Such transformations could be truth

(accuracy) preserving (as in conjunct reordering or deletion of redundancy [S mith85], or nontruth

preserving (as in theory revision tasks [Richards9l, Towel190]).



The transformations available to a learner define its vocabulary of transformations. These are essen-

tially learning operators and collectively they define a transformation space. For instance, acquiring

a macrooperator can be viewed as transforming the initial state (the original planner) into a new

state (the planner operating with the macrooperator). A learning system must search this space for

a sequence of transformation which result in a better planner.

First, we will precisely define what makes a learning system adequate. Given an initial planner, Po,

a learning system is minimally adequate if it: 1) halts without making any changes, or 2) applies a

sequence of transformations which yields a new planner P,, which is preferred to Pow (i.e. if it does

anything, it produces a better planner). One learning system is more adequate (better) than another

if it produces preferred planners. A system which identifies the most preferred planner in the trans-

formation space (there may be more than one) is optimal. To make this notion concrete we must

define a preference function over planners.

There are many ways to assign preferences. For this paper we view preference in terms of a numeric

utility function which ranks differently transformed planners according to our intuitive notions of

preferences. In particular, we will consider the case where a utility value can be assigned to a plan-

ner's behavior for any given problem. The utility of a planner is then defined with respect to a partic-

ular problem distribution as the sum of problem utilities weighted by the probability of each prob-

lem. A similar definition appears in [Greiner92]. This covers the obvious measures of effectiveness.

For example, if we are interested in minimizing problem solving cost, problem utility increases as

the cost required to solve that problem decreases. The utility of the planner is then:

UTILITY(planneri)- Cost(plannerbprob) X Pr(prob)
probEDistributfon

Utility is a preference function which ranks different planners. But the learning algorithm must

search through alternative transformations. We need a way to convert preferences over planners into

preferences over transformations. The utility of a transformation is the change in utility that results

from applying the transformation to a particular planner. This means the utility of a transformation

is conditional on the planner to which it is applied. We denote this as: AUTILITY(TransformationlPlan-

ner). Applying a transformation with positive utility results in a more effective planner. A learning

system need not explicitly compute utility values to identify preferred planners, but it must act (at
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least approximately) as if it does. In fact, most learning systems do not explicitly make utility deter-

minations.

3 CHALLENGES AND DIRECTIONS

We are presenting a view of learning as search. A learning system must move through the transfor-

mation space in search of preferred planners. To accomplish this task it must identify transforma-

tions with positive utility. Typically, transformations are proposed in response to problem solving

success or impasses, and their benefit is estimated (if at all) from future problem solving episodes.

There are three basic challenges to adequate learning: 1) the space of possible transformations is

too large, 2) it is expensive to reliably identify good transformations, and 3) it may be infeasible to

solve even a single problem with the initial planner confounding the processes of transformation

proposal and validation. These difficulties suggest there there does not exist a general solution to

this task. In spite of this, there are a number of published techniques which clai,n to work well. The

remainder of this section resolves this contradiction by illustrating how learning techniques make

simplifications to address each challenge.

In very few cases are simplifications explicit in the published reports of these works. Thus, it is diffi-

cult to determine the precise simplifications an algorithm embodies. Even if elucidated, these may

not useful in the sense that it would be hard to instantiate them in a different algorithm. Instead, we

present concise and obvious simplifications to each challenge. We then argue how different tech-

niques are best viewed as approximating these commitments. Figure 1 summarizes the approaches

to be discussed. This is intended to be representative of the approaches which are popular in the

literature and is not meant to be exhaustive. The discussion is organized into approaches for each

of the three basic challenges. Unless otherwise noted, solutions to one challenge are independent

of the solutions to other challenges. There are frequently relationships between the approaches with-

in each challenge, and these will be noted in the text.

3.1 Transformation Space Complexity

In this section we presume that the utility of transformations can be determined. The challenge is

to efficiently find an appropriate sequence of transformation. Unfortunately, there are many ways

to change the initial planner. We can consider all possible subsets of transformations. Furthermore,
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Transformation
Space

Complexity
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Uts,01 Indicates mutuallyexclusive
simplifications

COMPOSER
[Natarajan89]

PRODIGY/EBL
COMPOSER

PRODIGY/EBL
IMEX

SOAR
COMPOSER IMEX
STATIC STATIC

PRODIGY/EEL

PRODIGY/EBL
IMEX

SOAR
COMPOSER

PRODIGY/EBL
IMEX
SOAR

PRODIGY/EEL
IMEX

[Natarajan89]
SOAR
COMPOSER [Natarajan89]

PRODIGY/EBL
SOAR

Figure 1: Summary of simplifying approaches

as several authors have noted, the order of these transformations is often important (e.g. very differ-

ent behavior can result. from changes in the order in which macro operators are evaluated).

For a set of n transformations there are O(nn!) distinguishable changes (any planner may be the result

of up to n dered transformations). Even n may be excessively large. For example, Etzioni provides

a bound on the number of control rules entertained by his STATIC system which is exponential in

the number of predicates in the domain theory [Etzioni9Ob pp. 171-174]. If transformations involve

continuous parameters (e.g. modifications to the realvalued parameters of a static board evaluator),

the space may be uncountably infinite.

An unconstrained algorithm will consider all nn! alternatives. This is rarely feasible. However,

there are a number of simplifications which can reduce the space. We discuss three which are ortho-

gonal and many system adopt more than one. The first approach is to avoid searching all possible

orderings for transformations.

AVOIDING PERMUTATIONS (Ti)

With this commitment, the number of distinguishable planners is reduced from O(nn!) to 0(211). In

practice this means that if an algorithm is considering a new transformation to adopt, it will not con-
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sider all possible places to insert the transformation into the existing sequence. In some cases the

order is resolved in a particular way. In the case of macro-operators, Shavlik suggests one ordering

scheme: order the library of macro-operators such that each newly learned macro-operators is

placed before the original domain theory but after previously learned macro-operators [Shavlik88].

Minton's PRODIGY/EBL system arbitrarily maintains control rules in the order they were learned

[Minton88 p. 79]. In both cases the authors acknowledge that (Efferent ordering schemes result in

different planning behavior.

Legislating a particular ordering will avoid many alternatives. When we can demonstrate that the

order of transformations is irrelevant, or that the best ordering can be determined without search,

this simplification can be adopted without cost. Without such guarantees, the system may not find

preferred planners when they exist. Thus it may preclude optimality or otherwise lower the adequa-

cy of the learning system. On the other hand, a system utilizing this simplification retains minimally

adequacy, as it does not effect the reliability of utility values. Some systems which ignore alternative

permutations are IMEX [Braverman88], COMPOSER [Gratch9la], STATIC [Etzioni90a], BAGGER

[Shavlik88], and PRODIGY/EBL [Minton88]. We are not aware of a technique which does not adopt

this assumption.

While Ti reduces complexity, it is generally insufficient. One of the difficulties is that even with

ordering constraints there are a large number of conditional utilities: AUTILITY(TIIP), AUTIL-

ITY(TilT2P), AUTILITY(TIIT2T3P), etc. A powerful simplification is to treat the utility of a trans-

formation as independent of other transformations.

INDEPENDENCE: VTilTi, AUTILI7'Y(TilTiP) = AUTILITY(TilP) (T2)

Under this simplification a learning system can evaluate each transformation once, without regard

to context of other transformations. This allows a local decision procedure for adopting transforma-

tions. Each transformation is evaluated without regard for other adopted transformations. If the

transformation is beneficial, adopt it, otherwise discard it. The complexity of search is reduced to

0(n).

This assumption leads to adequate learning under certain sufficient conditions. If the transforma-

tions are in fact independent, a learning system can discover the optimal transformation sequence

in 0(n). If this condition cannot be guaranteed, weaker conditions are sufficient to display at least
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minimal adequacy. A learning system can ignore dependencies as long as negative interactions are

not overwhelming. An example of an overwhelming negative interaction would be the case where,

individually, two transformations benefit the planner but, collectively, they hurt performance.

Many speedup learning systems adopt transformations using decision procedures which do not ex-

plicitly consider interactions (including STATIC [Etzioni90a], PRODIGY/EBL, RECEBG [Letov-

sky90], IMEX, and PEBL [Eskey90]). Ma and Wilkins illustrate a similar situation for knowledge

base revision systems [Wilkins89]. Systems which do not adopt this assumption include PALO

[Greiner92], COMPOSER, and [Leckie91].

Unfortunately, accounts of systems which ignore interactions do not characterize when this simplifi-

cation is appropriate. Furthermore, it is becoming clear that the transformations utilized by these

techniques do interact. In [Gratch90b] and [Gratch9 lb] we demonstrate how macro operators and

control rules produce harmful interactions. In the later article we illustrate a simple domain which

exhibits strong negative interactions. When tested on this domain, the utility analysis technique of

PRODIGY/EBL and the nonrecursive hypothesis of STATIC generate planners several times worse

than the initial planner. These results show this simplification can produce inadequate performance.

They also highlight why more emphasis must be placed on explicating and providing sufficient con-

ditions for the simplifications which underlie learning techniques.

A final simplification is to avoid exploring the entire search space:

INCOMPLETE /UNRECOVERABLE SEARCH (T3)

There exists a wide array of search techniques to deal with complexity. For example, an unrecover-

able technique like hillclimbing can reduce the complexity to 0(n2) (at most n choices at each step

for at most n steps). The number of choices can be further reduced by only considering a subset of

the n possible transformations. In either case these simplifications retain minimal adequacy at the

cost of reduced learning opportunities. A hillclimbing technique which is stuck at a local maxima

may produce a planner which is less adequate than a more comprehensive learner.

Many learning techniques consider only a subset of the legal transformations. For example, SOAR

does not entertain all possible chunks, but only those learned in response to impasses. Other tech-

niques are explicit hillclimbers which terminate search when a local maxima is reached [Grein-

er92] or when the training set is exhausted [Gratch9la].
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3.2 Estimation Complexity

The preceding discussion assumed that utility values were available to the learning system. Unfortu-

nately this is rarely the case. The utility of a transformation depends on information which is fre-

quently unavailable like the distribution of future problems. The natural approach is to estimate util-

ity from training example

The simplest approach to estimation is estimation by brute force. Execute the planner over all prob-

lems in the expected test set, observing its behavior. Then make a transformation and rerun the plan-

ner on the same set of problems. Ur , the difference between the two runs to estimate the utility of

the transformation. As the test set may be large, unavailable, or infinite, and there may be many

transformations from which to choose from, this approach is impractical. Many techniques are

thriftier in their use of examples. They embody the following simplification:

SIMULTANEOUS ESTIMATION (El)

This means that the technique extracts information about multiple transformations from each exam-

ple. PRODIGY/EBL, COMPOSER, SYLLOG [Markovitch89], and PALO [Greiner92] perform si-

multaneous estimation. This simplification is justified if the estimate for one transformation is not

influenced by whatever other transformations are being estimated. This condition is easily verified

empirically, and in some systems the simplification is unjustified. For example, PRODIGY/EBL

gathers statistics for control rules as other rules are learned and forgotten. These shifting conditions

influence the estimates. In [Gratch9 lb] we illustrate a domain where these influences lead to learn-

ing behavior which is not minimally adequate. COMPOSER and PALO were designed to explicitly

enable simultaneous estimation.

The primary difficulty, however, is that we typically cannot feasibly evaluate a transformation over

all future problems. Instead we must estimate utility from a subset of the distribution. Approaches

to this problem vary in the number of examples required to produce their estimates. By definition,

estimates are approximations to reality. A transformation which is estimated to be good may in fact

have negative utility. Many approaches to not attempt to quantify or bound the this type of error.

UNQUANTIFIEDIUNBOUNDED ERROR (E2)

Techniques which derive utility estimates from examples but do not reason about the accuracy of

those estimates including PRODIGY/EBL, SYLLOG, and [Leckie9l]. The decision of how many



examples are necessary is left in the hands of the user and no guarantees are provided for the accuracy
of the resulting estimates. It may be difficult in these cases to provide sufficient conditions for when
the probability of error is acceptably low. The complement of E2 is:

QUANTIFIED /BOUNDED ERROR (E3)

Statistical methods can bound the probability of mistakes, Error can be reduced by taking more ex-

amples. In fact, given a prespecified level of error, there are techniques which can draw sufficient

examples to reach this error level (assuming the method is appropriate). The guarantee is gained
at the cost of many training examples, but Greinerand Cohen show how (under weak assumptions)
to achieve an arbitrary level of confidence with polynomial examples [Greiner92]. Different statisti-
cal models require differing amounts of data. There is a large body of work in statistics which de-

scribes these alternative methods and their sufficient conditions.

Finally, the most demanding simplification is:

LEARNING WITHOUT EXAMPLES (E4)

If we can identify transformations which reduce the problem solving cost of all possible problems,

we can learn without data. This is similar to the notion ofdominance in [Wellman90]. If this proper-
ty can be demonstrated, a transformation will yield an improved planner independent of the problem

distribution. Such transformations do exist. For example, a planner can only benefit from deleting
an unsatisfiable or redundant operator. The STATIC system is grounded in the principle that its set
of transformations will increase utility independent of distribution [Etzioni9Ob p. 134]. Unfortu-

nately, the STATIC approach does not quantify or bound its accuracy and it is difficult to demonstrate

conditions when the accuracy is acceptable. Etzioni illustrates some domains where STATIC is ade-

quate but negative results appear in [Gratch91b]. But when it is appropriate, learning without exam-
ple is a powerful simplification as it precludes the challenge of observation complexity to which we
now turn.

33 Observation Complexity

Learning techniques must observe data from the task environment to estimate utility values. Besides

th distribution of problems, this data often involves properties of the planner's state space, or prop-

erties of solution paths. The most common way to gather this data is to solve problems with the cur-
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rently transformed planner. Problems can be randomly drawn from the distribution and solution

their traces examined.

LEARNING FROM SELF SOLUTIONS (01)

But planning is not tractable in general. Thus, it may not be feasible to solve even one problem with

the initial planner. Learning from selfsolutions equates observation complexity with the complex-

ity of the initial planner in the domain of interest. If this approach is to be feasible, this complexity

must be sufficiently small. While this condition is rarely articulated, it is implicit in a wide range

of learning techniques [Braverman88, Laird86, Minton85, Mitchell83, Ruby91].

One might ask why we need to learn at all if problem solving is already feasible. However, in many

circumstances this quite reasonable. For instance, in situations where large numbers of problems

must be solved, small increases in efficiency can result in huge savings.

If learning from selfsolutions is impractical, the alternative approach is to:

LEARNING FROM A TEACHER (02)

Some techniques require a teacher to provide the appropriate data. This places the observation com-

plexity in the hands of the teacher. The teacher, though its superior knowledge, presumably can elicit

the data in reasonable time. For example of this approach, Tadepalli demonstrates that when do-

mains are serially decomposable, a system can generate a polynomialtime problem solver by learn-

ing a body of control knowledge called a macrotable [Tadepalli91], To learn this table the system

requires a teacher which knows the macrotable we wish to learn. This teacher then provides the

learning system with solutions generated according to the table. Natarajan introduces a technique

which requires the teacher to provide optimal solution paths [Natarajan89].

LEARNING FROM SIMPLER PROBLEMS (03)

An intriguing alternative is to learn to solve intractable problems by training on simpler, tractable

problems. This is analogous to classroom learning were a carefully selected set of "text book" prob-

lems should lead to sophisticated problem solving ability. Natarajan demonstrates some sufficient

conditions under which this type of learning is possible [Natarajan89].

9
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When it is not feasible to completely solve a. problem, useful information may still be gleaned from

partial solutions:

LEARNING FROM PARTIAL SOLUTIONS (04)

Techniques which learn from failure like SOAR and PRODIGY/EBL can generate transformations

in response to incomplete solution attempts. Unfortunately it is difficult to generate reliable utility

estimates from partial solution traces. For example, it may be the case that a transformation behaves

very differently as problem solving proceeds. By prematurely terminating the planner, we may not

get a representative sample of the transformations behavior.

4 COMPOSER

We have identified a number of the challenges facing an adequate learner. In this section we describe

in some detail a particular approach to this problem, the COMPOSER system. An important property

of this technique is that it makes its simplifications explicit. It implements a preference criteria based

on reducing planning time. The utility of transformations is explicitly estimated and the system

adopts transformations which, with high probability, have positive utility. The approach is probabi-

listically adequate, where the probability of error is arbitrary and determined by the user.

COMPOSER is currently implemented with control rules as its vocabulary of transformations. A

number of simplifications are adopted to approach the problem. The technique incrementally builds

strategies one transformation at a time. The system only considers adding new control rules to the

end of the existing list. Thus, alternative orders for each transformation are ignored (T1). Only a sub-

set of legal transformations are considered, namely rules which are proposed in response to planning

impasses (T3). This reduced space of transformations is explored by hillclimbing (T3). Multiple

transformations are estimated simultaneously (El). Utility estimates are based on a statistical model

and error is bounded to a user specified value (E3). The technique gathers data through selfsolution

(01). If problem solving is not feasible, system terminates without adopting any transformations.

COMPOSER can be viewed as an rigorous version of the utility analysis approach of PRODIGY/EBL.

While our implementation is an augmentation of PRODIGY/EBL, the basic approach can be ex-

tended to a wide range of planners and transformation vocabularies:

10



4.1 Gathering Observations

COMPOSER uses the mechanisms of PRODIGY/EBL to propose control rules for the PRODIGY plan-

ner. The PRODIGY planner is a STRIPS-like planner which generates an annotated record of prob-

lem solving. The problem trace describes the resources spent at each node, including time spent

evaluating control rules. The PRODIGY/EBL's learning module analyzes this trace and conjectures

possible control rules.

In PRODIGY/EBL, conjectured rules are added to the planner and undergo a heuristic form of utility

analysis. Rules which fail this analysis are retracted. COMPOSER replaces this heuristic analysis

with a rigorous alternative. Conjectured transformations are placed on a pending list of rules. The

preconditions of pending rules are evaluated and the match cost recorded. However, the recommen-

dations of pending rules are not performed. Instead, the system annotates the problem trace with

the changes they would have introduced. In this way, estimated rules do not influence the behavior

of the planner which enables data to be gathered on multiple rules from a single solution trace. The

specific process is fairly involved and is described in [Gratch90a]. The extracted utility values are

conditional on the current set of transformations adopted by the system.

4.2 Estimating Utility

Utility values from several problems can be combined to estimate the utility of a transformation

acrosc., the distribution of problems. The system should only adopt transformations which have posi-

tive utility. Additionally, the system should remove from the pending list any transformations with

negative utility. In statistics this is referred to as a sequential analysis problem. Observations are

gathered until some criteria, a stopping criteria, is satisfied. In this case we are estimating the utility

of transformations to some specified confidence. We require the user to provided an error parameter,

8, which specifies the acceptable probability of incorrectly adopting a transformation.1

COMPOSER must choose among two hypotheses for any rule on the pending list:

Ho: AUTILITY(rulelplanner) <- 0, or H1: AUTILITY(rulelplanner) > 0

Averaging the observations across problems yields an estimate of the true utility. This estimate will

differ from the true value, so the system must bound the discrepancy. In particular, if the rule is nega-

tive, the system must bound the probability that it will appear positive and vice versa. This is equiva-

1. Alternatively we could require that 1 5 represent the confidence that every step makes progress. This requires
determining a Si at each step such that the sum of all Si's equals 5.
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lent to bounding the probability that the magnitude of the true utility is exceeded by the difference

between true and estimated utility:

P( IESTIMATE UTILITY! > [UTILITY' ) 8

Nadas [Nadas69] describes a distributionfree stopping criteria which can be applied.2 It solves

the more general problem of bounding the probability that an unknown mean is in an interval of size

proportional to the mean. In our case we bound the unknown mean to an open interval which is ex-

actly the size of the unknown mean. The technique requires gathering M examples where M is de-

fined as:

M min,,,i {n: (V,,M2 n(pl a)2}

where Vn E X)2, X is the average utility, Xi is the utility on problem i, and pis the proportional

parameter. In our case p is close to one (0.9999). The parameter a satisfies the constraint that(13 (a)

8/2, where cto is the cumulative distribution function of the standard normal distribution.

43 Learning

The stopping criteria permits COMPOSER to identify beneficial transformations with high probabil-

ity. After each problem solving attempt, COMPOSER updates the statistics and evaluates the stop-

ping criteria for each element of the pending list. If no control rule has attained the confidence re-

quirement, another problem is solved. If the stopping rule identifies control rules with positive

utility (there may be more than one), COMPOSER adds the control rule with highest positive utility

to the current strategy, and removes it from the pending list. Statistics for the remaining pending

rules are discarded as they are meaningless in the context of the resulting control strategy. If the

stopping criteria identifies pending rules with negative utility, they are eliminated from the pending

list. Eliminating a pending rule does not affect the current strategy, so the statistics associated with

the remaining pending rules are left unchanged. This cycle is repeated until the training set is ex-

hausted. Each time a transformation is adopted the efficiency of the PRODIGY planner is increased,

giving COMPOSER an anytime behavior [Dean88].

2. The method is limited to distributions with a finite variance and provides an approximate confidence interval.
Woodroofe provides secondorder results that this approximation is very close in practice [Woodroofe82]. Greiner
and Cohen [Greiner92] provide an alternative stopping rule which provides somewhat stronger guarantees at the cost
of many more training examples. For example, in the domains we have tested, Nadas' technique requires on the order
of ten training examples to accurately estimate the utility of a transformation. In the same domains, Greiner and Co-
hen's method requires several thousand training examples per transformation.
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4.4 Evaluating COMPOSER

COMPOSER was tested on a domain from [Minton88], a domain in [Etzioni90a] for which PRODI-

GY/EBL produced harmful strategies, and a domain in [Gratch9lb] which yielded detrimental re-

sults for both STATIC and PRODIGY/EBL. The results are summarized in Figure 2. The confidence

for adding a transformation was set at 95%. In each domain the system is trained on a 100 training

examples drawn according to a fixed distribution. Snapshots are taken at designated intervals to pro-

vide a learning curve (the complete procedure is described in [Gratch90a]). The graphs illustrate

learning curves where the independent measure is the number of random training examples and the

dependent measure is execution time for 100 test problems. More effective strategies have lower

solution times. We provide PRODIGY without learning and PRODIGY/EBL as benchmarks for com-

parison.
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Solution
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Learned
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Learning
Tune

(average)

Solution
Time

(average)

Solution
Time

(average)

ABWORLD 1 1663 sec. 208 sec. 11 1252 sec. 331 sec. 268 sec.

STRIPS 4 4139 sec. 357 sec. 20 3773 sec. 673 sec. 2362 sec.

BINWORL I 0 3425 sec. 346 sec. 2 6383 sec. 6020 sec. 346 sec.

Figure 2: Summary of empnical results

The results illustrates several interesting features. On all domains COMPOSER exceeded the per-

formance of PRODIGY/EBL, including domains where PRODIGY/EBL is inadequate. This is signifi-

cant as both systems investigate the same space of transformations. An important result is that the

intermediate planning times resulting from COMPOSER are monotonically decreasing. This indicates

that conditional utility is accurately estimated. A surprising fact is that in the domains where COM-

POSER acquired a strategy, only one or two control rules account for most, if not all, of the savings.

This suggests that most of the rules acquired by PRODIGY/EBL are; at best, superfluous.
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6 CONCLUSIONS

Learning shows great promise to extend the generality and effectiveness of planning techniques.

But if learning is to be useful, we must explicitly characterize the properties of these systems. This

article introduces the notion of adequacy to assess the merits of learning techniques. Surprisingly,

many learning systems are not even minimally adequate in that they may worsen planning perform-

ance.

The complexity of learning makes unconstrained techniques infeasible. But the task can be ap-

proached by introducing one or more simplifications. We discussed how many learning techniques

can be viewed as implicitly adopting these simplifications. In many cases these constraints are only

approximately satisfied with the result that these systems are not even minimally adequate. This

highlights the need for explicit examination of the assumptions underlying new learning systems,

as well as the need for analytical as well as empirical justification in future research. We discussed

the COMPOSER system as ore approach which is explicitly justified.

References

[Braverman88) M. S. Braverman and S. J. Russell,"IMEX: Overcoming intractability in explanation based learning,"
Proceedings of the National Conference on Artificial Intelligence, St. Paul, MN, 1988, pp. 575-579.

[DeJong86] G. F. DeJong and R. J. Moo ney, "ExplanationBased Learning: An Alternative View,"Machine Learn-
ing 1, 2 (April 1986), pp. 145-176. (Also appears as Technical Report UILUENG-86-2208, AI Re-
search Group, 'Coordinated Science Laboratory, University of Illinois at UrbanaChampaign.)

[Dean88] T. Dean and M. Roddy, "An Analysis of TimeDependent Planning," Proceedings of The Seventh Na-
tional Conference on Artificial Intelligence, Saint Paul, MN, August 1988, pp. 49-54.

[Drummond89] M. Drummond, "Situated Control Rules," Proceedings of the First International Conference on Princi-
ples of Knowledge Representation and Reasoning, Toronto, Ontario, Canada, May 1989, pp. 103-113.

[Eskey90] M. Eskey and M. Zweben, "Learning Search CO ntrol for ConstraintBased Scheduling,"Proceedings
of the National Conference on Artificial Intelligence, Boston, MA, August 1990, pp. 908-915.

[Etzioni90a] 0. Etzioni, "Why Prodigy/EBL Works," Proceedings of the National Conference on Artificial Intelli-
gence, Boston, MA, August 1990, pp. 916-922.

[Etzioni90b] 0. Etzioni, "A Structural Theory of Search Control," Ph.D. Thesis, Department of Computer Science,
CarnegieMelton University, Pittsburgh, PA, In preparation, 1990.

[Fikes72] R. E. Fikes, P. E. Hart and N.J. Nilsson, "Learning and Executing Generalized Robot Plans,"Artificial
Intelligence 3, 4 (1972), pp. 251-288.

[Gratch90a] J. Gratch and G. DeJong, "Utility Generalization and Composability Problems in ExplanationBased
Learning," Technical Report LTIUUCDCSR-91-1681, Department of Computer Science, University
of Illinois at UrbanaChampaign, 1990.

[Gratch90b] J. Gratch and G. DeJong, "A Framework for Evaluating Search Control Strategies," Proceedings of
the Workshop on Innovative Approaches to Planning, Scheduling and Control, San Diego, CA, November
1990, pp. 337-347.

[Gratch9la] J. Gratch and G. DeJong,"A Hybrid Approach to Guaranteed Effective Control Strategies," Proceed-
ings of the Eighth International Workshop on Machine Learning, Evanston, IL, June 1991.

[Gratch9lb] J. M. Gratch and G. F. DeJong, "On comparing operationality and utility," Technical Report
UIUCDCSR-91-1713, Department of Computer Science, University of Illinois, Urbana, IL, 1991.
(Submitted to Machine Learning Journal)

14 1



[Greiner92] IL Greiner and W. W. Cohen, "Probabilistic Hill-Climbing," Proceedings of Computational Learning
Theory and 'Natural' Learning Systems, 1992. ((to appear))

[Laird86] J. E. Laird, P. S. Rosenbloom and A. Newell, Universal Subgoaling and Chunking: The Automatic Genera-
tion and Learning of Goal Hierarchies, Kluwer Academic Publishers, Hingham, MA, 1986.

[Leckie91] C. Leckie and L Zukerman, "Learning Search Control Rules for Planning: An Inductive Approach,"
Proceedings of the Eighth International Workshop on Machine Learning, Evanston, IL, June 1991, pp.
422-426.

[Letovsky90] S. Letovsky, "Operationality Criteria for Recursive Predicates," Proceedings of the National Confer.
ence on Artificial Intelligence, Boston, MA, August 1990, pp. 936-941.

[Markovitch89] S. Markovitch and P.D. Scott, "Utilization Filtering: a method for reducing the inherent harmfulness
of deductively learned knowledge," Proceedings of The Eleventh International Jo int Conference on Artifi-
cial Intelligence, Detroit, MI, August 1989, pp. 738-743.

[Minton85] S. Minton, "Selectively Generalizing Plans for Problem-Solving,"Proceedings ofthe Ninth Internation-
al Joint Conference on Artificial Intelligence, Los Angeles, August 1985, pp. 596-599.

[Minton88] S. N. Ylinton, "Learning Effective Search Control Knowledge: An Explanation-Based Approach,"
Ph.D. Thesis, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, March
1988. (Also appears as CMU-CS-88-133)

[Mitche1183] T. M. Mitchell, P. E. Utgoff and IL Banerji, "Learning by Experimentation: Acquiring and Refining
Problem-solving Heuristics,"in Machine Learning: An Artificial Intelligence Approach, R. S. Michalski,
J. G. Carbonell, T. M. Mitchell (ed.), Tioga Publishing Company, Palo Alto, CA, 1983, pp. 163-190.

[Mitchell86] T. M. Mitchell, IL Keller and S. Kedar-Cabelli, "Explanation-Based Generalization: A Unifying
View," Machine Learning l, 1 (January 1986), pp. 47-80.

[Nadas69] A. Nadas, "An extension of a theorem of Chow and Robbins on sequential confidence intervals for the
mean," The Annals of Mathematical Statistics 40, 2 (1969), pp. 667-671.

[Natarajan89] B. K. Nataraj an, "0 n Learning from Exercises ,"Proceedings ofthe Second AnnualWorkshop on Comp u-
tational Learning Theory, Santa Cruz, CA, JULY 1989, pp. 72-87.

[Richards91] B. L. Richards and R. J. Mooney, "First-order theory revision," Proceedings of the Eighth International
Workshop on Machine Learning, Evanston, IL, June 1991, pp. 447-451.

[Ruby91] D. Ruby and D. Kibler, "SteppingStone: an empirical and analytical evaluation," Proceedings of the
National Conference on Artificial Intelligence, Anaheim, CA, July 1991, pp. 527-532.

[Shavlik88] J. W. Shavllk, "Generalizing the Structure of Explanations in Explanation-Based Learning," Ph.D.
Thesis, Department of Computer Science, University of Illinois, Urbana, IL, January 1988. (Also ap-
pears as UILU- ENG-87 -2276, AI Research Group, Coordinated Science Laboratory, University of
Illinois at Urbana-Champaign.)

[Smith85] D.E. Smith and M.R. G-enesereth, "0 rdering Conjunctive Queries," Artificial Intelligence 26, 2(1985),
pp. 171-215.

[Subramanian90] D. Subramanian and it Feldman, "The Utility of EBL in Recursive Domain Theories," Proceedings of
the National Conference on Artificial Intelligence, Boston, MA, August 1990, pp. 942-949.

[Tadepalli9l] P. Tadepalli, "Learning with Inscrutable Theories," Proceedings of the Eighth International Workshop
on Machine Learning, Evanston, IL, June 1991, pp. 544-548.

[Towel190] G. G. l'owell, J. W. Shavlik and M. 0. Noordewier, "Refinement of approximate domain theories by
knowledge-base neural networks," Proceedings of the National Conference on Artificial Intelligence,
Boston, MA, August 1990, pp. 861-866.

[Utgoff9l] P. E. Utgoff and J. A. Clouse, 'Two kinds of training information for evaluation function learning,"
Proceedings of the National Conference on Artificial Intelligence, Anaheim, CA, July 1991, pp. 596-600.

[Weilman90] M. P. Wellman, Formulation of Tradeoffs in Planning Under Uncertainty, Pitman and Morgan Kauf-
mann, 1990.

[Wilkins89] D. C. Wilkins and Y. Ma,"Sociopatl ic knowledge bases: correct knowledge can be harmful even given
unlimited computation," Teel- Acal Report UIUCDCS-R-89-1538, Department of Computer Sci-
ence, University of Illinois, Urbana, IL, 1989.

[Woodroofe82] M. Woodroofe, Nonlinear Renewal Theory in Sequential Analysis, SOCIETY for INDUSTRIAL and
APPLIED MATHEMATICS, Philadelphia, PA, 1982.

15



BIBLIOGRAPHIC DATA
SHEET

1. Report No.
UIUCDCS -R -92 -1723

2. 3. Recipient's Accession No.

. it e a it e

An Analysis of Learning to Plan as a Search Problem

5. eport 10 ate

January 1992
.

7. Author(s)
Jonathan Gratch and Gerald DeJon&

8. Performing Organization Rept.
- -

10. Project/Task/Work Unit No.9. Performing Organization Name and Address

Department of Computer Science
1304 W. Springfield Avenue
Urbana, IL 61801

11. Contract/Grant No.

NSF IRI 87-19766

12. Sponsoring Organization Name and Address

National Science Foundation

13. Type of Report 15t Period
Covered
Technical

14.

15. Supplementary Notes

16. Abstracts

Increasingly, machine learning is entertained as a mechanism for improving the efficiency of plan-
ning systems. Research in this area has generated an impressive battery of techniques and a growing
body of empirical successes. Unfortunately the formal properties of these systems are not well un-
derstood. This is highlighted by a growing corpus of demonstrations where learning actually de-
grades planning performance. In this paper we view learning to plan as a search problem. Learning
is seen as a transformational process where a planner is tailored to a particular domain and problem
distribution. To accomplish this task, learning systems draw from a vocabulary of transformation
operators such as macrooperators or control rules. These "learning operators" define a space of
possible transformations through which a system must search for a efficient planner. We show that
the complexity of this search precludes a general solution and can only be approached via simplifica-
tions. We illustrate the frequently unarticulated commitments which underly current learning ap-
proaches. These simplifications improve learning efficiency but not without tradeoffs. In some
cases these tradeoffs result in less than optimal behavior. In others, they produce planners which
become worse through learning. It is hoped that by articulating these commitments we can better
understand their ramifications. Finally, we discusses a particular learning technique which explicitly
utilizes these simplifications to ensures performance improvements with reasonable efficiency.

17. Key Words and Document Analysis. 17a. Descriptors

Learning and Planning, Empirical methods, Theoritical and Empirical evaluation

17b. Identifiers/Open-Ended Terms

17e. COSATI Field/Group

18. Availability Statement

unlimited

19.. Security Class (This
Report)

1. .

21. No. of Pages
17

ecurity ass ( is

Pa UNCLASSIFIED

22. Price

.b
WOIRM NY1S1111 (10.701 USCOMI14- DC 403211.P 71


